推理模型
更新时间:2025-02-18 16:06:47
平台支持 DeepSeek 的推理模型 deepseek-reasoner
。在输出最终回答之前,模型会先输出一段思维链内容,以提升最终答案的准确性。
前提条件
在使用推理模型前,需安装并升级 OpenAI SDK。
API 参数
上下文拼接
每进行一轮对话过程中,模型均会输出思维链内容(reasoning_content
)和最终回答(content
),在下一轮对话中,之前轮对话中输出的思维链内容不会被拼接在上下文中。
注意 |
---|
API 调用时不能传入 |

访问示例
以 Python 语言为例,展示如何访问思维链和最终回答,以及如何在多轮对话中进行上下文拼接。
说明 |
---|
示例中的 |
非流式
from openai import OpenAI
client = OpenAI(api_key='sk-xxxxxxxxxx', base_url='https://openapi.coreshub.cn/v1')
# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
model="DeepSeek-R1",
messages=messages
)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
# Round 2
messages.append({'role': 'assistant', 'content': content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
model="DeepSeek-R1",
messages=messages
)
# ...
流式
from openai import OpenAI
client = OpenAI(api_key='sk-xxxxxxxxxx', base_url='https://openapi.coreshub.cn/v1')
# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
model="DeepSeek-R1",
messages=messages,
stream=True
)
reasoning_content = ""
content = ""
for chunk in response:
if chunk.choices[0].delta.reasoning_content:
reasoning_content += chunk.choices[0].delta.reasoning_content
else:
content += chunk.choices[0].delta.content
# Round 2
messages.append({"role": "assistant", "content": content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
model="DeepSeek-R1",
messages=messages,
stream=True
)
# ...