前缀续写
更新时间:2025-03-04 11:23:41
对话前缀续写是指在给定一段对话的开头部分(即对话前缀)的基础上,让大语言模型继续生成后续的对话内容。
支持的模型
目前 DeepSeek 全系列大语言模型均支持。
注意事项
-
用户需提前在 API 密钥管理中创建和获取 API KEY。
-
API 调用时,用户需将
messages
数组列表里最后一条消息中的role
设置为assistant
。
代码示例
Curl
curl -X POST https://openapi.coreshub.cn/v1/chat/completions \
-H "Authorization: Bearer sk-xxxxxxxxxx" \
-H "Content-Type: application/json" \
-d '{
"model": "DeepSeek-V3",
"messages": [{
"role": "user",
"content": "请对“叮铃铃,下课铃响了”这句话进行续写,用一句话来描述校园里突然生机和活力的场景"
},
{
"role": "assistant",
"content": "叮铃铃,下课铃响了"
}]
}'
Python
-
示例一:
示例需求如下:
-
设置
assistant
开头消息为"```python\n"
,用于强制模型输出 Python 代码。 -
设置
stop
参数为['```']
用于避免模型的额外解释。
from openai import OpenAI client = OpenAI(api_key='sk-xxxxxxxxxx', base_url='https://openapi.coreshub.cn/v1') messages = [ {"role": "user", "content": "Please write quick sort code"}, {"role": "assistant", "content": "```python\n"} ] response = client.chat.completions.create( model="DeepSeek-V3", messages=messages, stop=["```"], ) print(response.choices[0].message.content)
-
-
示例二:
import os from openai import OpenAI client = OpenAI(api_key='sk-xxxxxxxxxx', base_url='https://openapi.coreshub.cn/v1') completion = client.chat.completions.create( model="DeepSeek-V3", messages=[{ "role": "user", "content": "请对“叮铃铃,下课铃响了”这句话进行续写,用一句话来描述校园里突然生机和活力的场景" }, { "role": "assistant", "content": "叮铃铃,下课铃响了" }] ) print(completion.choices[0].message.content)
返回结果
Curl
{
"id": "902d63b5f10940e08f50dde32224b15d",
"object": "chat.completion",
"created": 1740987764,
"model": "DeepSeek-V3",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": ",原本安静的校园瞬间沸腾起来,学生们如欢快的小鸟般涌出教室,操场上顿时充满了欢声笑语和青春的气息。",
"tool_calls": null
},
"logprobs": null,
"finish_reason": "stop",
"matched_stop": 1
}
],
"usage": {
"prompt_tokens": 37,
"total_tokens": 67,
"completion_tokens": 30,
"prompt_tokens_details": null
}
}
Python
-
示例一:
-
示例二: